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In analogy to the molecular theory of mechanical viscoelastic behaviour, the effect of the refe
rence chain dimensions on the deformation birefringence of polymer networks was specified. 
This enabled the effects connected with the change of the internal energy of chains with tempera
ture and with the strain effect of the solvent to be introduced into the final relationships describing 
both the linear viscoelastic and nonlinear equilibrium birefringence. 

In an earlier paper l we discussed the effect of introduction of the reference chain 
dimensions into the molecular theory of the viscoelastic behaviour of polymer net
works which permitted to include into viscoelastic functions the effects connected 
with a change in the internal energy of chains with temperature and the deformation 
effect of the diluent. Since the birefringence caused by deformation of amorphous 
polymers is related to the same motions of macromolecules which are also responsible 
for the viscoelastic behaviour, this paper will mainly report the consequences 
of introduction of the reference state of the polymer chain on its value. 

Similarly to an earlier example l , we shall consider the model of a freely-jointed 
chain containing N free submolecules, each of which consists of z statistical segments 
having a length a and allowing the end-to-end distribution of the submolecule to be 
Gaussian. If a sample is deformed in the isotropic state (which generally differs 
from the reference one), to the dimensions corresponding to the deformation ratios A" 
Ay , Az (A. = 1/10 , where I or 10 respectively is the deformed or initial length in the iso
tropic state), the molecules are departed from their equilibrium positions and graduaI-, 
ly approach new equilibrium positions by a diffusional motion described by the Fok
ker-Planck equation. For the distribution function of end-to-end chain distances in a 

deformed isotropic state ~ in the system of normal coordinates U j , Vj, Wj ... UN ' VN, 

WN it holds 1 

~dUl ... dWN=(~)3N/2exp{bi ,s t [U2~ + V2~ + ~~J} NdUt ... dwN 
7t n-l f3x , n f3 y ,n f3z ,n n f3 f3 f3 

Collection Czechoslov. Chern, Commun. /Vol. 38/ (1973) 

x,n y,n z ,n 
n=l 

(1) 



1772 Ilavsky: 

where 

is the mean square end-to-end distance of the submolecule in the reference state, 

«5> = ~,5/~ is the dilatation factor, IT: is the mean square end-to-end distance 
of the submolecule in the isotropic state, /3x,n is the time-dependent value of the de
formation ratio /3;,o(t) = 1 + (A~ - 1) exp ( - trro) (similar relationships hold also 

for /3;,0 and /3;,0)' Tn = 1/{16bi ,sk/lTsin 2 [(n - 1) n/2NJ} is the relaxation time for 
a chain whose both ends are bonded in the network, /l is the mobility of the junction 
point of two submolecules, k is Boltzmann's constant and Tis absolute temperature. 

The total polarization anisotropy of the sample PI - P 2 , in the deformed isotropic 
state is given by 

(2) 

where v is the number of chains in the sample. For anisotropy of a submolecule 
in the reference state it can be written 2

,3 

N 

PI - Pt = ~(al - at) bo L [u~ - t(v~ + w~)J, (3) 
n=1 

where a l or at respectively denotes the polarization of light with an electric vector 
parallel or vertical to the direction of the statistical segment. By using the Lorentz
Lorentz relationship between the refractive index n and polarization P, Eqs (2) 
and (3) give for the birefringence ~n = n 1 - n t in the case of a unidirectional 
elongation 

where Ii is the mean refractive index and Vi ,s = v/Vi,s is concentration of chains 
in the isotropic state having the volume Vi,s' The equilibrium part of birefringence 
from Eq. (4) coincides with the earlier expression 4

. By analogy with the linear visco
elastic behaviour it can be written for the linear viscoelastic birefringence ~n l(t) 

(5) 

where G = A-I, B(t) is the optical relaxation function and H(O) is the optical relaxa

tion spectrum, for which it can be found from Eq. (4) 

H(O) _ n + ( ) Vi, s ai,s Sa 0 -1/2 ( -2 2)2 < 2 >3 / 2 (Z J: R2)1 / 2 
- --ji-- a 1 - at 15 6kT T , (6) 
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where Z = zN is the total number of statistical segments in the chain, ~a = NjflZ 

is the frictional factor per a statistical segment, and ~ = N-;:r. 
When calculating molecular characteristics from birefringence by means of Eqs (4) 

and (6), the change in the reference state with temperature and dilution during forma
tion of the network must be taken into account similarly to the case of the mechanical 
relaxation spectrum 1. Assuming that the reference state is identical with the state 
of network formation, it holds for the dilatation factor of the isotropic swollen 
state (characterized by the temperature Tand the volume fraction of the polymer V)l 

(7) 

where « d) = R:,dIR~; R;" or R;'d respectively is the mean square end-to-end dis
tance of a chain in the isotropic swollen or dry state and TO, V

O are conditions at net
work formation. By combining Eqs (7) and (4), it is possible to analyze in detail 
the effect of external conditions on both the equilibrium and viscoelastic birefringence. 
Comparison of an earlier relationship for stress relaxation 1 (T(A, t) with Eq. (4) gives 
for the stress-optical coefficient C the expression 

(8) 

independent of time, the content of crosslinks and the reference state; as a conse
quence, it can also be deduced that H (O)j H(m) = C, where H(m) is the mechanical 
relaxation spectrum 1. 

The basic condition for the above approach consists in the entropic nature of deformation; 
in other words, all configurations realized by a chain subject to the action of an external force 
at a constant temperature and pressure are isoenergetic. On the other hand, the introduction 
of the reference state of the network enabled us to take into account the change in the internal 

energy with temperature; as a consequence, the temperature dependence R5 differs from ~ 
and <lXf,d)T "# 1. For a much more realistic model of the polymer network - that is, for seg
ments with constant valence angles and with hindered rotations4

,5 - this means that the participa
tion of different rotational isomers changes with temperature (while no changes can be observed 
with deformation) . In this way, the participation of the individual rotational isomers in the sta
tistical segment also changes with temperature, which in turn can lead to a pronounced tempera
ture dependence of the difference of the segment polarization, I:1IX = 1X 1 - (Xt> and thus also of the 
stress-optical coefficient C. The procedure outlined above can be used only for the orientational 
part of the total birefringence, not reflecting the distortional (given by the change in the valency 
angles) and the shape (given particularly by the specific interaction of the solvent with the chain) 
birefringence. This predetermines the application of the above relationships in the first place 
to the end of the main transition region in the proximity of the rubberlike behaviour of amorphous 
polymers, which is the only region where the orientational birefringence can be expected to de
termine the total behaviour. 
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